Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Activity-based models offer the potential for a far deeper understanding of daily mobility behaviour than trip-based models. Based on the fundamental assumption that travel demand is derived from the need to do activities, they are flexible tools that aim ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
This paper addresses the complexity reduction of stochastic homogenization of a class of random materials for a stationary diffusion equation. A cost-efficient approximation of the correctors is obtained using a method designed to exploit quasi-periodicity ...
This paper describes a novel method for non-holonomic robots of convex shape to avoid imminent collisions with moving obstacles. The method's purpose is to assist navigation in crowds by correcting steering from the robot's path planner or driver. We evalu ...
We consider distributed optimization over several devices, each sending incremental model updates to a central server. This setting is considered, for instance, in federated learning. Various schemes have been designed to compress the model updates in orde ...
It has been experimentally observed that the efficiency of distributed training with stochastic gradient (SGD) depends decisively on the batch size and—in asynchronous implementations—on the gradient staleness. Especially, it has been observed that the spe ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear convergenc ...
A class of deep Boltzmann machines is considered in the simplified framework of a quenched system with Gaussian noise and independent entries. The quenched pressure of a K-layers spin glass model is studied allowing interactions only among consecutive laye ...
A central task in high-level synthesis is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile-time, but recent years have seen the emergence o ...