Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Labeled dataLabeled data is a group of samples that have been tagged with one or more labels. Labeling typically takes a set of unlabeled data and augments each piece of it with informative tags. For example, a data label might indicate whether a photo contains a horse or a cow, which words were uttered in an audio recording, what type of action is being performed in a video, what the topic of a news article is, what the overall sentiment of a tweet is, or whether a dot in an X-ray is a tumor.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Extreme learning machineEn apprentissage automatique, le terme extreme learning machine (machine à apprentissage extrême) fait référence à un type de réseau de neurones. Sa spécificité est de n'avoir qu'une seule couche de nœuds cachés, où les poids des entrées de connexion de nœuds cachés sont répartis au hasard et jamais mis à jour. Ces poids entre les nœuds cachés d'entrée et les sorties sont appris en une seule étape, ce qui revient essentiellement à l'apprentissage d'un modèle linéaire.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
Domaine de premier niveauUn domaine de premier niveau ou un domaine de tête (top-level domain, ou TLD), aussi appelé une extension, est, dans le système de noms de domaine internet, un sous-domaine de la racine. Dans un nom de domaine, le domaine de premier niveau est généralement le dernier élément du nom de domaine (exemple : dans , le domaine de premier niveau est ). vignette|Exemples de domaines de premier niveau. Le dernier point est optionnel. À l'origine, il indiquait la fin du nom de domaine. Par simplicité, l'usage courant est de ne plus l'indiquer.
Trouble du déficit de l'attention avec ou sans hyperactivitéLe trouble déficit de l'attention avec ou sans hyperactivité (TDAH ; en anglais : attention deficit hyperactivity disorder, ADHD) est un trouble du neurodéveloppement caractérisé par trois types de symptômes pouvant se manifester seuls ou combinés : des difficultés d'attention et son contrôle, des symptômes d'hyperactivité et d'hyperkinésie et des problèmes de gestion de l'impulsivité. Le trouble est reconnu lorsque ces symptômes se manifestent de manière persistante, sur six mois ou plus, et de manière suffisamment importante pour poser un obstacle développemental ou perturber l'insertion sociale ou encore le travail scolaire.