Time-evolution of local information: Thermalization dynamics of local observables
Publications associées (44)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
EPFL2022
The characterization of open quantum systems is a central and recurring problem for the development of quantum technologies. For time-independent systems, an (often unique) steady state describes the average physics once all the transient processes have fa ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2022
With the capabilities such as single-photon detection, time stamping and high-speed acquisition, time-resolved imaging based on single-photon avalanche diode (SPAD) detectors has found significant applications across diverse domains, including but not limi ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of material, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photon ...
2019
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
EPFL2021
,
The hemocyanin protein binds and transports molecular oxygen via two copper atoms at its core. The singlet state of the Cu2O2 core is thought to be stabilised by a superexchange pathway, but detailed in situ computational analysis is complicated by the mul ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
We introduce a novel hybrid algorithm to simulate the real-time evolution of quantum systems using parameterized quantum circuits. The method, named "projected - Variational Quantum Dynamics" (p-VQD) realizes an iterative, global projection of the exact ti ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2021
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of materials, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photo ...