Publication

Teaching machines how to find strongly lensed galaxies in cosmological sky surveys.

Résumé

Analyzing gravitationally lensed objects enables a wide range of physical and cosmological applications, such as probing the dark matter content in galaxies and clusters or measuring the Universe's expansion rate.The precision of these applications can be improved drastically with a larger number of lenses. For this reason, finding new strong gravitational lensing systems is crucial. Traditionally, gravitational lenses were found with meticulous visual inspections of imaging datasets. However, the next generation of large-scale imaging surveys will produce such a large amount of data that visual inspection will be unpractical, thus motivating the development of efficient automated detection methods to handle large datasets and improve the accuracy of the different applications.The main topic of this thesis is to develop and improve our lens finding algorithms and to study new strong gravitational lenses in large-scale imaging surveys.The first part of this thesis has been to develop a new tool that allows the production of lens simulations. Deep learning algorithms, particularly convolutional neural networks (CNNs), have recently proven their efficiency in detecting lensing systems. In particular, CNNs can be adapted to find a large variety of lenses at once, making them especially suited to be part of automated detection pipelines. However, convolutional neural networks usually require large sets of images to be trained. Unfortunately, the number of known lenses is at this time too low to constitute a sufficient training set. For this reason, robust and flexible tools to simulate realistic lenses have to be developed to generate training sets. Lens simulations must, however, be as realistic as possible to avoid biases.In this thesis, we propose a simulation tool that enables the production of large sets of realistic lens simulations. This tool has been designed to be flexible and, thus, enables the production of lens simulations with different types of deflectors for any imaging survey.The second part consists in separating the light of a lensed source from the foreground object. Indeed, in some cases, the lens features are hidden by the light of the foreground object and deblending might help to identify the lenses help identify lenses with small image separation and enables photometric redshift measurements or the initialization of lens models. This thesis presents a new data-driven method for deblending strong gravitational lenses based on neural networks.Finally, due to the low occurrence rate of strong lensing, the false positive rate of detection algorithms is still a significant challenge. Therefore, we present different tools that enable the inspection of large sets of candidate images. In addition, evaluating the quality of lens candidates is somewhat subjective since the features that define a lens may differ for different experts. Therefore, we propose a set of grading guidelines that can be used for the subsequent ground-based imaging lens searches in this thesis.The CNN-based classifier, the deblending algorithm, and the simulation and visualization tools are part of an automated lens-finding pipeline. This flexible pipeline can be adapted to future large-scale surveys. We discuss in this thesis its first applications to the Canada-France Imaging Survey and the Dark Energy Survey, which led to the discovery of 133 and 403 high-quality lens candidates, respectively.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Lentille gravitationnelle
En astrophysique, une lentille gravitationnelle, ou mirage gravitationnel, est produit par la présence d'un corps céleste très massif (tel, par exemple, un amas de galaxies) se situant entre un observateur et une source « lumineuse » lointaine. La lentille gravitationnelle, imprimant un fort champ gravitationnel autour d'elle, a comme effet de faire dévier les rayons lumineux qui passent près d'elle, déformant ainsi les images que reçoit un observateur placé sur la ligne de visée.
Lentille gravitationnelle faible
Une lentille gravitationnelle faible (weak gravitational lensing en anglais) est une lentille gravitationnelle dont les effets sont limités par rapport aux lentilles gravitationnelles fortes. Plus fréquentes que ces dernières, les lentilles gravitationnelles faibles sont beaucoup plus difficiles à observer. Comme tout type de lentille gravitationnelle, les lentilles gravitationnelles faibles peuvent être produites par divers corps célestes plus ou moins massifs. Selon le ou les corps impliqués, les effets de lentille varieront.
Microlentille gravitationnelle
La microlentille gravitationnelle est un phénomène utilisé en astronomie pour détecter des corps célestes en utilisant l'effet de la lentille gravitationnelle. En général, cette dernière ne permet de détecter que des objets lumineux qui émettent beaucoup de lumière (comme les étoiles) ou des objets étendus qui bloquent la lumière de fond (nuages de gaz ou de poussière). La microlentille permet d'étudier les objets qui n'émettent que peu ou pas de lumière.
Afficher plus
Publications associées (60)

Searching for Strong Gravitational Lenses

Frédéric Courbin, Cameron Alexander Campbell Lemon

Strong gravitational lenses provide unique laboratories for cosmological and astrophysical investigations, but they must first be discovered - a task that can be met with significant contamination by other astrophysical objects and asterisms. Here we revie ...
Dordrecht2024

CURLING - I. The influence of point-like image approximation on the outcomes of cluster strong lens modelling

Jean-Paul Richard Kneib, Huanyuan Shan, Nan Li

Cluster-scale strong lensing is a powerful tool for exploring the properties of dark matter and constraining cosmological models. However, due to the complex parameter space, pixelized strong lens modelling in galaxy clusters is computationally expensive, ...
Oxford Univ Press2024

Strong and micro lensing in distant quasars

Eric Gérard Guy Paic

Most large galaxies contain Super Massive Black Holes at their centers, drawing matter nearby to form swirling accretion disks emitting electromagnetic radiation. These are Active Galactic Nuclei. The brightest quasars are the most luminous Universe object ...
EPFL2023
Afficher plus
MOOCs associés (15)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.