Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Analyse des réseaux sociauxL'analyse des réseaux sociaux est une approche issue de la sociologie, qui a recours à la théorie des réseaux afin d'étudier les interactions sociales, en termes de réseau. La théorie des réseaux sociaux conçoit les interactions sociales en termes de nœuds et liens. Les nœuds sont habituellement les acteurs sociaux dans le réseau, mais ils peuvent aussi représenter des institutions, et les liens sont les interactions ou les relations entre ces nœuds.
Agent intelligentEn intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Constructivisme (psychologie)Le constructivisme, théorie de l'apprentissage, a été développée, entre autres, par Piaget, dès 1923, face au béhaviorisme qui, d’après lui, limitait trop l’apprentissage à l’association stimulus-réponse et considérait le sujet comme boîte noire. L’approche constructiviste s'intéresse à l'activité du sujet pour se construire une représentation de la réalité qui l’entoure. Le constructivisme part de l'idée que les connaissances de chaque sujet ne sont pas spécialement une « copie » de la réalité, mais un modèle plus ou moins fidèle de celle-ci construit par lui au cours du temps.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.
Observational learningObservational learning is learning that occurs through observing the behavior of others. It is a form of social learning which takes various forms, based on various processes. In humans, this form of learning seems to not need reinforcement to occur, but instead, requires a social model such as a parent, sibling, friend, or teacher with surroundings. Particularly in childhood, a model is someone of authority or higher status in an environment.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.