Incompleteness of graph neural networks for points clouds in three dimensions
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Can we use machine learning to compress graph data? The absence of ordering in graphs poses a significant challenge to conventional compression algorithms, limiting their attainable gains as well as their ability to discover relevant patterns. On the other ...
Data is pervasive in today's world and has actually been for quite some time. With the increasing volume of data to process, there is a need for faster and at least as accurate techniques than what we already have. In particular, the last decade recorded t ...
In the localization game on a graph, the goal is to find a fixed but unknown target node v* with the least number of distance queries possible. In the j-th step of the game, the player queries a single node v_j and receives, as an answer to their query, th ...
With the advent of data science, the analysis of network or graph data has become a very timely research problem. A variety of recent works have been proposed to generalize neural networks to graphs, either from a spectral graph theory or a spatial perspec ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Mobile manipulator throwing is a promising method to increase the flexibility and efficiency of dynamic manipulation in factories. Its major challenge is to efficiently plan a feasible throw under a wide set of task specifications. We show that the mobile ...
This master thesis provides in-depth explanations of how deep learning and graph theory can be used together to perform pointwise classification in 3D point clouds obtained by combinations of geospatial images. That scene understanding problem arises in a ...
Efficient large-scale graph processing is crucial to many disciplines. Yet, while graph algorithms naturally expose massive parallelism opportunities, their performance is limited by the memory system because of irregular memory accesses. State-of-the-art ...
Graphs are a central tool in machine learning and information processing as they allow to conveniently capture the structure of complex datasets. In this context, it is of high importance to develop flexible models of signals defined over graphs or network ...
Institute of Electrical and Electronics Engineers2017