Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The aim of this study is to evaluate how much the changes in the concrete mix design, which enable carbon footprint reduction, are impacting mechanical properties and predicted service life of concrete structure. The starting point of this study was concrete mix used in a recent reinforced concrete Peljesac Bridge in the Adriatic. In the first round of experiments the amount of cement in this initial mix was significantly lowered, without jeopardising workability of the mix. In the second round, the main part of the cement was substituted with the combination of fly ash and limestone or calcined clay and limestone. All supplementary cementitious materials used were sourced in the region of the structure. The calcined clays used in this study were collected locally and found to have a low kaolin content. On all mixes fresh and mechanical properties were tested to ensure that the requested equal or better workability and mechanical stability were reached. Furthermore, on each mix chloride migration was tested to evaluate the resistance of mix to chloride penetration. All mixtures were evaluated based on the overall performance considering mechanical, durability, and carbon footprints. The results indicate that the total cement content had a significant effect on durability and thus service life. The bridge mix design was determined to be 'over designed,' as all alternative mixes achieved a similar or higher sustainability index with lower amount of cement.
Christian Leinenbach, Rafal Wróbel
Pascal Pierre Michon, Aleksis Dind