Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the Feynman-Kitaev Hamiltonian acting on the composed system as a qubit operator and find an approximate ground state using the variational quantum eigensolver. We apply the algorithm to the study of the dynamics of a transverse-field Ising chain with an increasing number of spins and time steps, proving a favorable scaling in terms of the number of two-qubit gates. Through numerical experiments, we investigate its robustness against noise, showing that the method can be used to evaluate dynamical properties of quantum systems and detect the presence of dynamical quantum phase transitions by measuring Loschmidt echoes.