Constraining Latent and Sensible Heat Fluxes during Drifting and Blowing Snow Events in Antarctica using in–situ Measurements and Large–Eddy Simulations
Publications associées (127)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 ...
The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
This work studies the nearshore hydrodynamics of a shallow turbulent flow entering a laterally unconfined quiescent ambient with a sloping bottom boundary. Examples of such flow are neutrally buoyant ebb tidal jets and hyperpycnal river plumes entering ope ...
Drifting and blowing snow are important features in polar and high mountain regions. They control the surface mass balance in windy conditions and influence sublimation of snow and ice surfaces. Despite their importance, model representations in weather an ...
The surface mass balance (SMB) of large polar ice sheets and of snow and ice surfaces in general are incompletely understood because of the complexity of processes involved. One such process, drifting and blowing snow, has only been considered in a very si ...
Low wind speeds (< 4 m/s) are ubiquitous in many water bodies, yet the physical processes occurring at the air-water interface in this range are poorly understood. A notable example is smooth patches on the water surface, known as natural slicks, formed wh ...
Snow precipitation frequently occurs under moderate to strong wind conditions, resulting in drifting and blowing snow. Processes like particle fragmentation and airborne metamorphism during snow transport result in microstructural modifications of the ulti ...
Sublimation influences the water storage in snow covers and glaciers, which is important for water use and projections of the sea level rise. Yet, it is challenging to quantify sublimation for large areas or in conditions of snow transport. In-situ measure ...
In spring, when the mountainous snow cover becomes patchy, the strong multi-scale surface heterogeneity influences atmospheric heat exchange processes. At valley scale, thermally driven winds advect warm air towards snow-covered regions at higher elevation ...
The cold regions on Earth, such as the polar and high mountain regions, are snow covered for at least a part of the year. These snow-covered surfaces are highly dynamic, particularly under the influence of strong winds. The aeolian or wind-driven transport ...