Task parallelismTask parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data.
Parallélisme de donnéeLe parallélisme par distribution de donnée ou parallélisme de donnée (data parallelism en anglais) est un paradigme de la programmation parallèle. Autrement dit, c'est une manière particulière d'écrire des programmes pour des machines parallèles. Les algorithmes des programmes qui entrent dans cette catégorie cherchent à distribuer les données au sein des processus et à y opérer les mêmes opérations à l'instar des SIMD. Le paradigme opposé est celui du parallélisme de tâche. Catégorie:Programmation concurr
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
Microprocesseur multi-cœurvignette|Un processeur quad-core AMD Opteron. vignette|L’Intel Core 2 Duo E6300 est un processeur double cœur. Un microprocesseur multi-cœur (multi-core en anglais) est un microprocesseur possédant plusieurs cœurs physiques fonctionnant simultanément. Il se distingue d'architectures plus anciennes (360/91) où un processeur unique commandait plusieurs circuits de calcul simultanés. Un cœur (en anglais, core) est un ensemble de circuits capables d’exécuter des programmes de façon autonome.
Granularity (parallel computing)In parallel computing, granularity (or grain size) of a task is a measure of the amount of work (or computation) which is performed by that task. Another definition of granularity takes into account the communication overhead between multiple processors or processing elements. It defines granularity as the ratio of computation time to communication time, wherein computation time is the time required to perform the computation of a task and communication time is the time required to exchange data between processors.
Parallel programming modelIn computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs can execute. The implementation of a parallel programming model can take the form of a library invoked from a sequential language, as an extension to an existing language, or as an entirely new language.
Memory access patternIn computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage. These patterns differ in the level of locality of reference and drastically affect cache performance, and also have implications for the approach to parallelism and distribution of workload in shared memory systems. Further, cache coherency issues can affect multiprocessor performance, which means that certain memory access patterns place a ceiling on parallelism (which manycore approaches seek to break).
Algorithme d'énumérationLes algorithmes d’énumération sont des algorithmes qui ont pour but de calculer ou afficher une liste de toutes les réponses à un problème donné ; alors que les algorithmes « classiques » cherchent plutôt une solution (problèmes d’optimisation) ou à tester la vérité d’une affirmation (problèmes de décision). Par exemple, un algorithme listant toutes les cliques d’un graphe est un algorithme d’énumération. Cette distinction est faite pour pouvoir construire des classes de complexité propres aux problèmes d’énumération.
Traitement massivement parallèleEn informatique, le traitement massivement parallèle (en anglais, massively parallel processing ou massively parallel computing) est l'utilisation d'un grand nombre de processeurs (ou d'ordinateurs distincts) pour effectuer un ensemble de calculs coordonnés en parallèle (c'est-à-dire simultanément). Différentes approches ont été utilisées pour implanter le traitement massivement parallèle. Dans cette approche, la puissance de calcul d'un grand nombre d'ordinateurs distribués est utilisée de façon opportuniste chaque fois qu'un ordinateur est disponible.
Clique (théorie des graphes)thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).