Sparse Autoencoders for Speech Modeling and Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Automatic Speech Recognition systems typically use smoothed spectral features as acoustic observations. In recent studies, it has been shown that complementing these standard features with pitch frequency could improve the system performance of the system. ...
This paper investigates possibilities to automatically find a low-dimensional, formant-related physical representation of the speech signal, which is suitable for automatic speech recognition (ASR). This aim is motivated by the fact that formants have been ...
This paper presents clustering experiments performed over noisy texts (i.e. texts that have been extracted through an automatic process like character or speech recognition). The effect of recognition errors is investigated by comparing clustering results ...
This paper presents the theoretical basis and preliminary experimental results of a new HMM model, referred to as HMM2, which can be considered as a mixture of HMMs. In this new model, the emission probabilities of the temporal (primary) HMM are estimated ...
Automatic Speech Recognition systems typically use smoothed spectral features as acoustic observations. In recent studies, it has been shown that complementing these standard features with pitch frequency could improve the system performance of the system. ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
In this communication we first review the human speech production process and feature extraction approaches commonly used in a speaker verification system. Experiments on the telephone speech {NTIMIT} database suggest that the performance degradation of a ...
This paper investigates possibilities to automatically find a low-dimensional, formant-related physical representation of the speech signal, which is suitable for automatic speech recognition (ASR). This aim is motivated by the fact that formants have been ...