Publication

Towards near-atomic resolution imaging of microsecond nanoscale dynamics

Gabriele Bongiovanni
2023
Thèse EPFL
Résumé

Time-resolved electron microscopy has made significant progress in recent years, with some groups now working on instruments that offer attosecond temporal resolution. While much of the research in the field revolves around the improvement of temporal resolution, atomic-resolution imaging of nanoscale dynamics has remained elusive.This thesis describes the development of two methods for time-resolved electron microscopy which afford near-atomic spatial resolution. The first consists of a modification of a commercial transmission electron microscope to generate bright and intense microsecond electron pulses, which are then used to image fast and irreversible nanoscale dynamics with atomic resolution (Chapters 2 and 3). The second is a novel approach to time-resolved cryo-electron microscopy which boosts the temporal resolution to the microsecond timescale (Chapters 4 and 5).Chapter 2 describes the irradiation of a Schottky emitter with microsecond laser pulses. The temperature of the filament rises to extreme values for brief periods of time, causing a significant increase in emission current. Even though the temperatures reached by the filament tip during laser irradiation are well beyond the maximum value recommended by the manufacturer, we show that the brief and localized heating provided by the focused laser pulse provides a way to extract large currents without damaging the filament.An electrostatic deflector, placed below the accelerator, chops the laser-boosted electron beam into microsecond pulses, as described in Chapter 3. We show that a 5 µs pulse generated with this method is brighter than the continuous electron beam and can be used to capture an atomic-resolution image of a gold nanoparticle in a single shot. Two possible applications of these pulses are then discussed. Drift-corrected imaging, especially in the presence of large amounts of drift, is significantly improved when bright electron pulses are used instead of the continuous beam. In addition, these pulses can be employed to capture irreversible dynamics occurring on the microsecond timescale with atomic spatial resolution. Chapter 4 provides details of a novel method for microsecond time-resolved cryo-electron microscopy. The high temporal resolution is achieved by irradiating a cryo specimen with a laser beam, causing it to locally melt. The embedded biomolecules can undergo dynamics in liquid until the laser is switched off, at which point the sample revitrifies within a few microseconds trapping particles in their intermediate configurations. The chapter shows that it is possible to obtain a near-atomic resolution reconstruction from revitrified sample areas, and the result looks identical to a map obtained from conventional sample areas. In addition, the projection angles are more uniformly distributed after revitrification.Chapter 5 shows that it is not necessary to modify a transmission electron microscope to perform melting and revitrification experiments on a cryo sample. The chapter introduces a simplified setup, requiring an optical microscope, that allows performing such experiments and verify their outcome on the fly. We present the advantages and disadvantages of this new setup, in the hope it will encourage the adoption of our method by other research groups and boost the development of microsecond time-resolved cryo-electron microscopy.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Microscopie électronique en transmission
vignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Transmission electron cryomicroscopy
Transmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures (generally liquid-nitrogen temperatures). Cryo-EM is gaining popularity in structural biology. The utility of transmission electron cryomicroscopy stems from the fact that it allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment.
Cryomicroscopie électronique
vignette|Un microscope électronique en transmission (2003). La cryomicroscopie électronique (cryo-ME) correspond à une technique particulière de préparation d’échantillons biologiques utilisée en microscopie électronique en transmission. Développée au début des années 1980, cette technique permet de réduire les dommages d’irradiation causés par le faisceau d’électrons. Elle permet également de préserver la morphologie et la structure des échantillons.
Afficher plus
Publications associées (152)

Microsecond Time-Resolved Cryo-Electron Microscopy

Oliver Florian Harder

Recently, single-particle cryo-electron microscopy emerged as a technique capable of determining protein structures at near-atomic resolution and resolving protein dynamics with a temporal resolution ranging from second to milliseconds. This thesis describ ...
EPFL2024

Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics

Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Fabian Fischer, Patricia Brandl

Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surfac ...
2024

In Situ and Time-Resolved Transmission Electron Microscopy of Nanoscale Processes

Chengcheng Yan

Observing the fast dynamics of nanoscale systems is crucial in order to understand and ultimately control their behavior. Characterizing these dynamic processes requires techniques with atomic spatial resolution and a temporal resolution that matches the t ...
EPFL2023
Afficher plus
MOOCs associés (15)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.