Model agnostic methods meta-learn despite misspecifications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Epilepsy, a major neurological disease, requires careful diagnosis and treatment. However, the detection of epileptic seizures remains a significant challenge. Current clinical practice relies on expert analysis of EEG signals, a process that is time-consu ...
This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper "RaFSIP: Parameterizing ice multiplication in models using a machine learning approach", by ...
The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...