A Gyrokinetic Moment Model of the Plasma Boundary in Fusion Devices
Publications associées (88)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
The perpendicular propagation velocity of turbulent density fluctuations is an important parameter in fusion plasmas, since sheared plasma flows are crucial for reducing turbulence, and thus an essential input parameter for turbulent transport simulations. ...
A self-consistent model is presented for the simulation of a multi-component plasma in the tokamak boundary. A deuterium plasma is considered, with the plasma species that include electrons, deuterium atomic ions and deuterium molecular ions, while the deu ...
Flux-tube (local) gyrokinetic codes are widely used to simulate drift-wave turbulence in magnetic confinement devices. While a large number of studies show that flux-tube codes provide an excellent approximation for turbulent transport in medium-large devi ...
The first nonlinear gyrokinetic simulations obtained using a moment approach based on the Hermite-Laguerre decomposition of the distribution function are presented, implementing advanced models for the collision operator. Turbulence in a two-dimensional Z- ...
The interaction between neutral particles and the plasma plays a key role in determining the dynamics of the tokamak boundary that, in turn, significantly impact the overall performance of the device. Leveraging the work in Wersal and Ricci [Nucl. Fusion 5 ...
Reduction in stimulated Brillouin scattering (SBS) from National Ignition Facility Hohlraums has been predicted through the use of multi-ion species materials on Hohlraum walls. This approach to controlling SBS is based upon introducing a lighter ion speci ...