Silicon photonicsSilicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).
Cristal photoniqueLes cristaux photoniques sont des structures périodiques de matériaux diélectriques, semi-conducteurs ou métallo-diélectriques modifiant la propagation des ondes électromagnétiques de la même manière qu'un potentiel périodique dans un cristal semi-conducteur affecte le déplacement des électrons en créant des bandes d'énergie autorisées et interdites. Les longueurs d'onde pouvant se propager dans le cristal se nomment des modes dont la représentation énergie-vecteur d'onde forme des bandes.
Optique intégréeL'optique intégrée concerne l'utilisation de technologies similaires à celles de la microélectronique pour la réalisation de composants optiques de très petite dimension. La réalisation des systèmes d'optique intégrée se fait par modification d'un substrat comme le phosphure d'indium. Ces technologies permettent de réaliser dans de faibles volumes des fonctions optiques élémentaires ou élaborées impossibles à réaliser par d’autres technologies. Leur géométrie générale est celle de plaquettes de quelques cm d'une épaisseur maximale de .
Optical transistorAn optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices.
Excitonvignette|Représentation schématique d'un exciton de Frenkel, dans un cristal (points noirs). Un exciton est, en physique, une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie souvent utilisée consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants. En 2008, le premier dispositif électronique basé sur des excitons a été démontré, fonctionnant à des températures cryogéniques.
Trou d'électronEn physique du solide, un trou d'électron (habituellement appelé tout simplement trou) est l'absence d'un électron dans la bande de valence, qui serait normalement remplie sans le trou. Une bande de valence remplie (ou presque remplie) est une caractéristique des isolants et des semi-conducteurs. Le concept de trou est essentiellement une façon simple d'analyser le mouvement d'un grand nombre d'électrons en traitant cette absence d'électron comme une quasi-particule. Les trous sont dus à l'interaction des électrons avec le réseau cristallin.
Photoniquevignette|Image de la lumière d'un laser ultra large-bande émergeant d'une fibre monomode de cristal photonique dont on voit la sortie à droite (point blanc).|alt=Sur fond noir une grande tache en forme d'étoile irisée à gauche et un petit point blanc à droite. La photonique est la branche de la physique concernant l'étude et la fabrication de composants permettant la génération, la transmission, le traitement (modulation, amplification) ou la conversion de signaux optiques.
Isolant de MottLes isolants de Mott sont des matériaux présentant une phase conductrice, avec une structure de bande électronique (voir théorie des bandes) délocalisée sur tout le réseau cristallin, et pouvant devenir isolant du fait d'une forte interaction répulsive entre électrons, entrainant leur localisation sur les noyaux atomiques. Dans un solide, lorsque les interactions répulsives entre les électrons d'un métal deviennent trop fortes, il peut se produire une "localisation" des électrons qui restent "accrochés" aux atomes constituant le réseau cristallin.
Electron mobilityIn solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .
Boîte quantiqueUne boîte quantique ou point quantique, aussi connu sous son appellation anglophone de quantum dot, est une nanostructure de semi-conducteurs. De par sa taille et ses caractéristiques, elle se comporte comme un puits de potentiel qui confine les électrons (et les trous) dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons (longueur d'onde de De Broglie), soit quelques dizaines de nanomètres dans un semi-conducteur.