Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents
Publications associées (35)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Fast and uniform ion transport within the solid electrolyte interphase (SEI) is considered a crucial factor for ensuring the long-term stability of metal electrodes. In this study, we present the fabrication of ultrathin artificial interphases consisting o ...
Zinc metal batteries are strongly hindered by water corrosion, as solvated zinc ions would bring the active water molecules to the electrode/electrolyte interface constantly. Herein, we report a sacrificial solvation shell to repel active water molecules f ...
Although Al-air batteries are expected to be the candidates for energy conversion systems in renewable energy market due to the higher energy density, richer reserves, and lighter mass of Al metal, the anode self-discharge is seen as a notorious issue that ...
The sustainable development of rechargeable aqueous zinc-ion batteries (RZIBs) is severely limited by the uncontrolled zinc dendritic growth and side reactions on the anode. Herein, a lignocellulose nanofiber (LCNF) separator from waste palm with dual-func ...
The energy transition towards a carbon-neutral and sustainable economy is one of the greatest challenges of the 21st century to combat global warming and pollution. The decarbonization process is affecting every sector of the economy (electricity, transpor ...
The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic li ...
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...
Uncontrollable zinc dendrite growth and parasitic reactions have greatly hindered the development of high energy and long life rechargeable aqueous zinc-ion batteries. Herein, the synergic effect of a bifunctional lignin-containing cellulose nanofiber (LCN ...
Continuous dendrites growth, as well as corrosion and side reactions of Zn metal anode seriously hinder the development of aqueous zinc ion batteries. To address these issues, oleic acid (OA) is dispersed into a 2 M ZnSO4 solution to form a novel colloidal ...
Aqueous zinc metal batteries with mild acidic electrolytes are considered promising candidates for large-scale energy storage. However, the Zn anode suffers from severe Zn dendrite growth and side reactions due to the unstable interfacial pH and the absenc ...