Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This manuscript offers the perspective of experimentalists on a number of modern data-driven techniques: model predictive control relying on Gaussian processes, adaptive data-driven control based on behavioral theory, and deep reinforcement learning. These techniques are compared in terms of data requirements, ease of use, computational burden, and robustness in the context of real-world applications. Our remarks and observations stem from a number of experimental investigations carried out in the field of building control in diverse environments, from lecture halls and apartment spaces to a hospital surgery center. The final goal is to support others in identifying what technique is best suited to tackle their own problems.
Zoë Holmes, Joseph Richard Gibbs
Berend Smit, Xiaoqi Zhang, Sauradeep Majumdar, Hyunsoo Park
Corentin Jean Dominique Fivet, Jan Friedrich Georg Brütting, Dario Redaelli, Alex-Manuel Muresan, Edisson Xavier Estrella Arcos