Publication

Three-dimensional hydraulic fracture propagation in homogeneous and heterogeneous media

Carlo Peruzzo
2023
Thèse EPFL
Résumé

Hydraulic fractures are tensile fractures that occur in solid materials due to the natural intrusion or anthropogenic injection of a viscous fluid into a fracture channel. The deliberate creation of hydraulic fractures is part of an industrial technology having various applications. For example, it is used for: the stimulation of hydrocarbon wells, the development of deep geothermal systems, and for measuring the in situ stress in rock formations. Additionally, hydraulic fractures may result from industrial processes such as geological carbon sequestration or wastewater injection.Hydraulic fractures propagate in a plane perpendicular to the minimum in situ compressive stress. In most sedimentary basins, the direction of this stress is horizontal, hence hydraulic fractures propagate in a vertical plane. Their vertical growth, often referred to as height growth, can be detrimental to the effectiveness of their application. For instance, in the stimulation of hydrocarbon wells, excessive height growth above the targeted layer will result in the delivery of fluid and proppant to unproductive zones and possibly the stimulation of water-bearing layers. Concerns have been raised about the migration of fluids into strata containing potable groundwater caused by hydraulic fracturing treatments. Another example is the case of in-situ stress estimation where an excessive height growth can compromise the measurement by connecting the pressurized interval to the rest of the wellbore. It is known that height growth can be hindered or arrested by the presence of different rock layers or in situ stress inhomogeneity. However, a complete understanding of the relative importance of the different types of heterogeneities on hydraulic fracture propagation is still lacking. Significant progress has been made over the last two decades thanks to the understanding of the multi-scale nature of the problem. This progress has led to the development of the Implicit Level Set Algorithm (ILSA). This numerical tool has been verified as capable of efficiently and accurately reproducing the planar propagation of hydraulic fractures, as observed in experiments carried out in both homogeneous and heterogeneous media.In this thesis work, we extend the scope of the ILSA algorithm to cases of large fracture front deformations. These cases are typically encountered when the front is locally pinned by tough and localized heterogeneities. We then further validate the ILSA algorithm by comparing it with new and recent analytical and experimental results. In particular, we highlight the comparison with the co-planar coalescence experiment of two hydraulic fractures. Based on the results obtained during these comparisons, we use the ILSA algorithm to study the effect of heterogeneities on fracture propagation. We determine the conditions under which the fracture front is arrested by a region of material characterized by a higher fracture energy. We determine how long two layers of material characterized by higher fracture energy can contain the hydraulic fracture propagation. We demonstrate a new hydraulic fracture containment mechanism in the case that propagation occurs in a material composed of a succession of layers.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Fracture (geology)
A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.
Mécanique de la rupture
La catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
Ténacité
La ténacité est la capacité d'un matériau à résister à la propagation d'une fissure. On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, mais il s'agit d'une définition anglophone. En anglais, on fait la différence entre « toughness », l'énergie de déformation à rupture par unité de volume (, ce qui correspond aussi à des pascals) et « », la ténacité au sens de résistance à la propagation de fissure.
Afficher plus
Publications associées (73)

Ascent and movement of buoyant fluids in the lithosphere

Brice Tanguy Alphonse Lecampion, Andreas Möri, Carlo Peruzzo

Hydraulic fractures are driven by an internal fluid pressure exceeding the minimum compressive stress, propagating in a direction perpendicular to the latter. This class of tensile fractures has gained interest over the last fifty years due to the developm ...
2023

Propagation of planar three-dimensional buoyant hydraulic fractures

Andreas Möri

Hydraulic fractures are driven by an internal fluid pressure exceeding the minimum compressive stress, propagating in a direction perpendicular to the latter. This class of tensile fractures has gained interest over the last fifty years due to the developm ...
EPFL2023

Gravitational effects on theemergence,propagation,andarrestofhydraulicfractures

Brice Tanguy Alphonse Lecampion, Andreas Möri, Carlo Peruzzo, Dmitriy Garagash

Hydraulic fractures are driven by an internal fluid pressure exceeding the minimum compres- sive stress, propagating in a direction perpendicular to the latter. This class of tensile fractures has gained interest over the last fifty years due to the develo ...
2023
Afficher plus
MOOCs associés (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.