Publication

Digital reconstruction of the mammalian spinal cord: from anatomical reference volume to cell type atlas of the mouse spinal cord

Ihor Kuras
2023
Thèse EPFL
Résumé

The spinal cord is an elongated nervous structure that together with the brain forms the central nervous system. It relays sensory and motor information between the brain and the body, thus controlling most somatic and autonomic body functions. In recent years, great progress has been made in creating digital atlases for the mouse brain, covering regions, cell composition and connectivity. For the spinal cord, however, such atlases do not yet exist.In this dissertation, I present the first versions of high-resolution 3D atlases of the spinal cords for five mammalian species: mouse, rat, marmoset, rhesus monkey, and human.First, I summarize the current state of the efforts to understand the spinal cord and its organization principles from anatomy (cytoarchitecture) to cell classifications and connectome principles. I then describe how the different properties of the spinal cord can help us in reconstructing the various spinal structures. Next, I present a workflow for data-driven reconstruction that can be used to create 3D models of the spinal cord of any species based on available annotated 2D microscopy images.I used data from Sengul, Watson, et al., 2012 to generate 3D reference volumes of the cytoarchitecture of the 5 mammalian species: mouse, rat, marmoset, rhesus monkey and human. Every 3D reference volume model comprises six levels of the spinal cytoarchitecture and defines their locations, shapes, and volumes. This allows us to compare the spinal cord of these 5 species. I find that all reconstructed spinal cords are remarkably similar, showing far fewer differences than the brains of the respective species.For the mouse spinal cord, I use data from the Allen Institute for Brain Science to generate a cell atlas for the three major spinal cell types: interneurons, motoneurons, and glial cells. The mouse spinal cell atlas comprises the densities and positions of 11,7 million cells in total with 2.7 million interneurons, about 31 thousand motoneurons, and 9.0 million glial cells.Next, I discuss how recent transcriptomic data can be used to assign a gene expression profile to each neuron in the spinal cell atlas. I present a preliminary analysis of RNA-sequencing and in situ RNA hybridization data aiming to develop a workflow for labeling of spinal cells with appropriate transcriptome profiles.Finally, I summarize the results of my dissertation as well as consequences and limitations of the underlying assumptions. This discussion ends with an outlook for how the atlas can be developed further in the future.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (42)
Moelle spinale
La moelle spinale (selon la nouvelle nomenclature), ou moelle épinière (dans l’ancienne nomenclature), désigne la partie du système nerveux central qui prolonge la moelle allongée appartenant au tronc cérébral. Elle est contenue dans le canal rachidien (canal formé par la superposition des foramens vertébraux), qui la soutient et la protège. Elle est constituée de neurones et de cellules gliales. Sa fonction principale est la transmission des messages nerveux entre le cerveau et le reste du corps.
Neurone
thumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Motoneurone
Les motoneurones constituent la voie de sortie du système nerveux central ou la voie finale de tout acte moteur. Les corps cellulaires des motoneurones sont situés soit dans le tronc cérébral, soit dans la corne ventrale de la substance grise de la moelle épinière. Chaque motoneurone possède un axone qui part du système nerveux central pour innerver les fibres musculaires d'un muscle. L'ensemble constitué par un motoneurone et les fibres musculaires qu'il innerve constitue une unité motrice.
Afficher plus
Publications associées (150)

Uncovering interactions between Descending Neurons as a functional principle of behavioural control

Jonas Friedrich Braun

Animals, including humans, exhibit a remarkable variety of complex behaviours. How the nervous system controls all these behaviours ranging from simple, stereotyped movements to flexible, adaptive actions is a central questions of neuroscience. One of the ...
EPFL2024

Multimodal transcriptomic atlases of mouse spinal cord injury

Matthieu Pierre Gautier

A spinal cord injury (SCI) triggers a cascade of molecular and cellular responses involving inflammatory cell infiltration and cytokine release, apoptosis, demyelination, excitotoxicity, ischemia, and the formation of a fibrotic scar surrounded by an astro ...
EPFL2024

Augmenting locomotor perception by remapping tactile foot sensation to the back

Olaf Blanke, Mohamed Bouri, Oliver Alan Kannape, Atena Fadaeijouybari, Selim Jean Habiby Alaoui

Background :Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferen ...
2024
Afficher plus
MOOCs associés (32)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.