Publication

A parcellation scheme of mouse isocortex based on reversals in connectivity gradients

Michael Reimann
2023
Article
Résumé

The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Concepts associés (32)
Cerveau
vignette|Cerveau d'un chimpanzé. Le cerveau est le principal organe du système nerveux des animaux bilatériens. Ce terme tient du langage courant (non scientifique) et chez les chordés, comme les humains, il peut désigner l'encéphale, ou uniquement une partie de l'encéphale, le prosencéphale (télencéphale + diencéphale), voire seulement le télencéphale. Néanmoins, dans cet article, le terme « cerveau » prend son sens le plus large. Le cerveau des chordés est situé dans la tête, protégé par le crâne chez les craniés, et son volume varie grandement d'une espèce à l'autre.
Cerveau humain
Le 'cerveau humain' a la même structure générale que le cerveau des autres mammifères, mais il est celui dont la taille relative par rapport au reste du corps est devenue la plus grande au cours de l'évolution. Si la baleine bleue a le cerveau le plus lourd avec contre environ pour celui de l'homme, le coefficient d'encéphalisation humain est le plus élevé et est sept fois supérieur à celui de la moyenne des mammifères.
Asymétrie cérébrale
En neurosciences cognitives, l'asymétrie cérébrale est l'inégale implication des deux hémisphères du cerveau dans les différentes fonctions mentales. Dans leur anatomie générale, les deux hémisphères sont très semblables mais il existe un certain nombre de caractéristiques plus fines qui les distinguent l'un de l'autre. Le lien entre ces différences structurelles et les différences fonctionnelles reste mal compris.
Afficher plus
Publications associées (52)

Noninvasive deep brain stimulation to modulate human behavior by means of transcranial temporal interference electrical stimulation

Elena Beanato

All functions we use in our everyday life depend on a complex interplay between both cortical and subcortical brain areas, communicating in between each others. When a region is affected by either an accident, aging or neurodegenerative diseases, the whole ...
EPFL2023

Structure-function coupling increases during interictal spikes in temporal lobe epilepsy: A graph signal processing study

Dimitri Nestor Alice Van De Ville, Maria Giulia Preti, Patric Hagmann

Objective: Structure-function coupling remains largely unknown in brain disorders. We studied this coupling during interictal epileptic discharges (IEDs), using graph signal processing in temporal lobe epilepsy (TLE). Methods: We decomposed IEDs of 17 pati ...
ELSEVIER IRELAND LTD2023

Tangent functional connectomes uncover more unique phenotypic traits

Enrico Amico, Mingkui Wang

Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
CELL PRESS2023
Afficher plus
MOOCs associés (22)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.