Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls
Publications associées (43)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The basis of the discrete element method is to model masses interacting with each other through different forces and constraints. On each mass, the second law of Newton is applied to obtain a differential equation. From this equation and boundary condition ...
This work is concerned with functional properties shared by partition functions of nineteen-vertex models with domain-wall boundary conditions. In particular, we describe both Izergin-Korepin and Fateev-Zamolodchikov models with the aforementioned boundary ...
We study the system of linear partial differential equations given by dw + a Lambda w = f, on open subsets of R-n, together with the algebraic equation da Lambda u = beta, where a is a given 1-form, f is a given (k + 1)-form, beta is a given k + 2-form, w ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
We solve two stochastic control problems in which a player tries to minimize or maximize the exit time from an interval of a Brownian particle, by controlling its drift. The player can change from one drift to another but is subject to a switching cost. In ...
Identification of kinetic models and estimation of reaction and mass-transfer parameters can be performed using the extent-based identification method, whereby each chemical/physical process is treated individually. This method is used here to analyze gas- ...
2013
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
The aim of this work is to propose and analyse a new high-order discontinuous Galerkin finite element method for the time integration of a Cauchy problem for second-order ordinary differential equations. These equations typically arise after space semidisc ...
Identification of kinetic models and estimation of reaction and mass-transfer parameters can be performed using the extent-based identification method, whereby each chemical/physical process is handled separately [1-3]. This method is used here to analyze ...
A partitioned implicit-explicit orthogonal Runge-Kutta method (PIROCK) is proposed for the time integration of diffusion-advection-reaction problems with possibly severely stiff reaction terms and stiff stochastic terms. The diffusion terms are solved by t ...