Publication

Computational design and additive manufacturing of electromagnetic coils

Résumé

The modern world is heavily reliant on electromagnetic devices to convert mechanical energy into electrical energy and vice versa. These devices are fundamental to powering our society, and the growing need for automated production lines and electrified transportation is driving the demand for even more advanced electromagnetic actuators. A critical component of these devices is the electromagnetic coil, typically constructed from copper wire wound into simple shapes. Over the years, extensive research and industrial development have led to a deep understanding of this technology. Nevertheless, innovation is needed to improve upon state-of-the-art or to access applications with harsher requirements.In this thesis, we propose using additive manufacturing techniques to fabricate electromagnetic coils, which eliminates geometric limitations and opens up new design possibilities. We also utilize computational design methods, which reformulate the design problem as an optimization one. These tools generate complex shapes belonging to a broader solution set than the one accessible by a human designer.The implemented method (topology optimization) investigates the ideal distribution of material in space. It first demonstrates the possibility of generating coils within a 2-D plane. This framework is expanded to consider the packing of multiple coils constituting motor windings without a-priori knowledge of their position or shape. A 2.5-D approach is formulated to design overlapping coils while maintaining a low computational cost. A 3-D analysis is also explored for designing coils with different functions in an electromagnet manipulator. The generated designs exhibit significantly improved electromagnetic performance, such as a motor constant increased by 17% or regions with uniform magnetic field 7 times larger than the references.The feasibility of additively manufacturing electromagnetic coils is examined through a study case of a linear motor with a reference coil topology. Innovative design features, such as tracks with an evolving cross-section and "completed" linear windings, are proposed to fully harvest the design freedom provided by additive manufacturing. Additionally, we propose the concept of multi-functional windings, integrating heat sinks within the electromagnetic coils for improved efficiency and self-cooling capabilities. This results in the possibility of increasing the motor force by 17.3% without increasing the volume of permanent magnets. Prototypes of various coil geometries are fabricated and tested.Overall, this thesis lays the foundation for a new generation of electromagnetic devices with improved performance through the combination of computational design methods and additive manufacturing technologies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Bobine (électricité)
Une bobine, solénoïde, auto-inductance ou quelquefois self (par anglicisme), est un composant courant en électrotechnique et électronique. Une bobine est constituée d'un enroulement de fil conducteur éventuellement autour d'un noyau en matériau ferromagnétique qui peut être un assemblage de feuilles de tôle ou un bloc de ferrite. Les physiciens et ingénieurs français l'appellent souvent par synecdoque « inductance », ce terme désignant la propriété caractéristique de la bobine, qui est son opposition à la variation du courant dans ses spires.
Electric motor
An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.
Induction motor
An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type. Three-phase squirrel-cage induction motors are widely used as industrial drives because they are self-starting, reliable, and economical.
Afficher plus
Publications associées (62)

Topology Optimization For Winding in Electric Motors

Pierre Chassagne

Electrical machines consumed the amount of 9’346 TWh in 2019, corresponding to more than 40% of the total global electricity consumption. With the growing demand for automation of production lines and electrification of the transport industry, this value i ...
2022

Diffusion-Bonding Between Strands and Modeling of Splices of Nb3Sn Rutherford Cables

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy

Particle accelerators foresee the use of Nb3Sn in the next generation of dipole magnets. A common design strategy is to grade the coil, i.e., to optimize the quantity of superconductor in the turns with respect to the magnetic field intensity. As a consequ ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

A Homogenization Model for Soft Magnetic Composites Considering the Effect of Mechanical Stress

Xiaotao Ren

Soft Magnetic Composites (SMC) are an alternative to laminated steels for the design of smaller and lighter electromagnetic devices.Such electromagnetic devices might be subjected to significant mechanical stresses that can alter their electromagnetic prop ...
2022
Afficher plus
MOOCs associés (20)
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.