Publication

Full Solution Process of a Near-Infrared Light-Emitting Electrochemical Cell Based on Novel Emissive Ruthenium Complexes of 1,10-Phenanthroline-Derived Ligands and a Eutectic Alloy as the Top Electrode

Résumé

Near-infrared luminescent materials have recently received considerable attention for a large number of applications, including in solid-state lighting, as bioimaging agents, as photovoltaic cells, and in the telecommunication industry. By adding diverse electron-donating or withdrawing groups on ancillary ligands based on benzenethiol-phenanthroline, we synthesized and optoelectronically characterized a series of novel ionic ruthenium complexes, namely RuS, RuSCl, RuSMe, and RuSNH2, for using in a light-emitting electrochemical cell. The synthesized complexes are intense red emitters in the range of 584-605 nm in solution, which depends on the substitutions of electron donor/acceptor moieties on the ancillary ligands. To find a suitable quantum mechanical approach, benchmark calculations based on time dependent density functional theory were carried out on these complexes. Our benchmark revealed that the M06-L method has results close to those of the experiment. Furthermore, to gain a deeper insight into electronic transitions, several excitation processes were investigated at the TD-DFT-SMD-MN12-L/gen level. The results showed that in the designed complexes, the dominant transition is between the 4dZ2 electron of Ru (particle) and the pi* orbitals of the ancillary ligand (hole). The single-layer devices, including these complexes along with a Ga/In cathode by a facile deposition method without the addition of any electron or hole transport layers, were fabricated and displayed red (678 nm) to near-infrared (701 nm) emission as well as a decrease of turn-on voltage from 3.85 to 3.10 V. In particular, adding a methyl group to the ancillary ligand in the complex RuSNH2 increases the external quantum efficiency to 0.55%, one of the highest observed values in the ruthenium phenanthroline family. This simple structure of the device lets us develop the practical applications of light-emitting electrochemical cells based on injection and screen printing methods, which are very promising for the vacuum-free deposition of top electrodes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Cellule photovoltaïque
Une cellule photovoltaïque, ou cellule solaire, est un composant électronique qui, exposé à la lumière, produit de l’électricité grâce à l’effet photovoltaïque. La puissance électrique obtenue est proportionnelle à la puissance lumineuse incidente et elle dépend du rendement de la cellule. Celle-ci délivre une tension continue et un courant la traverse dès qu'elle est connectée à une charge électrique (en général un onduleur, parfois une simple batterie électrique).
Théorie du champ de ligands
La théorie du champ de ligands ou modèle du champ de ligands décrit la liaison chimique, l'arrangement des orbitales et certaines autres caractéristiques de complexes de coordination impliquant un ion d'un métal de transition. Ce concept a été introduit en 1957 par Griffith et Orgel comme une description des complexes de métaux de transition plus exacte que celle proposée par la théorie du champ cristallin.
Énergie solaire photovoltaïque
L'énergie solaire photovoltaïque (ou énergie photovoltaïque ou EPV) est une énergie électrique produite à partir du rayonnement solaire grâce à des capteurs ou à des centrales solaires photovoltaïques. C'est une énergie renouvelable, car le Soleil est considéré comme une source inépuisable à l'échelle du temps humain. En fin de vie, un panneau photovoltaïque produit de 19 à l'énergie nécessaire à sa fabrication et à son recyclage.
Afficher plus
Publications associées (51)

III-V Nitride Semiconductors Deposited At Low Temperature For Photovoltaic Applications

Jonathan Emanuel Thomet

This thesis reports on the study and use of low temperature processes for the deposition of indium gallium nitride (InGaN) thin films in order to alleviate some of the present drawbacks of its monolitic deposition on silicon for photovoltaic applications. ...
EPFL2023

Photoelectrochemical Cell Engineering for Solar Energy Conversion

Dan Zhang

Solar energy is the most abundant energy source, harnessing solar energy holds the solution to the challenge of increasing global energy demand and reducing our dependence on fossil fuels. Photovoltaics which directly convert solar energy into electricity ...
EPFL2023

Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells

Ulf Anders Hagfeldt, Jianhua Liu

Inorganic CsPbI3 perovskite quantum dot (PQD) receives increasing attention for the application in the new generation solar cells, but the defects on the surface of PQDs significantly affect the photovoltaic performance and stability of solar cells. Herein ...
2020
Afficher plus
MOOCs associés (4)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.