Fairness and Explainability in Clustering Problems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this letter, an unsupervised kernel-based approach to change detection is introduced. Nonlinear clustering is utilized to partition in two a selected subset of pixels representing both changed and unchanged areas. Once the optimal clustering is obtained ...
After a major flood catastrophe, a precious information is the delineation of the affected areas. Remote sensing imagery, especially synthetic aperture radar, allows to obtain a global and complete view of the situation. However, the detection of the flood ...
It has been recently shown that a macroscopic fundamental diagram (MFD) linking space-mean network flow, density and speed exists in the urban transportation networks under some conditions. An MFD is further well defined if the network is homogeneous with ...
We investigate the ground-state properties of the highly degenerate noncoplanar phase of the classical bilinear-biquadratic Heisenberg model on the triangular lattice with Monte Carlo simulations. For that purpose, we introduce an Ising pseudospin represen ...
We introduce a simple and general approach to the problem of clustering structures from atomic trajectories of chemical reactions in solution. By considering distance metrics which are invariant under permutation of identical atoms or molecules, we demonst ...
In this paper we address the problem of detecting and localizing objects that can be both seen and heard, e.g., people. This may be solved within the framework of data clustering. We propose a new multimodal clustering algorithm based on a Gaussian mixture ...
The advance of GPS tracking technique brings a large amount of trajectory data. To better understand such mobility data, semantic models like “stop/move” (or inferring “activity”, “transportation mode”) recently become a hot topic for trajectory data analy ...
We propose to apply statistical clustering algorithms on a three-dimensional profile of red blood cells (RBCs) obtained through digital holographic microscopy (DHM). We show that two classes of RBCs stored for 14 and 38 days can be effectively classified. ...
The following article presents a novel, adaptive initialization scheme that can be applied to most state-ofthe-art Speaker Diarization algorithms, i.e. algorithms that use agglomerative hierarchical clustering with Bayesian Information Criterion (BIC) and ...
The following article presents a novel, adaptive initialization scheme that can be applied to most state-ofthe-art Speaker Diarization algorithms, i.e. algorithms that use agglomerative hierarchical clustering with Bayesian Information Criterion (BIC) and ...