Publication

Scalable maximal subgraph mining with backbone-preserving graph convolutions

Publications associées (37)

Equivariant Neural Architectures for Representing and Generating Graphs

Clément Arthur Yvon Vignac

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023

Maximum Independent Set: Self-Training through Dynamic Programming

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
2023

Results on Sparse Integer Programming and Geometric Independent Sets

Jana Tabea Cslovjecsek

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023

Random walks and forbidden minors III: poly(d epsilon(-1))-time partition oracles for minor-free graph classes

Akash Kumar

Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
IEEE COMPUTER SOC2022

Space-Efficient Representations of Graphs

Jakab Tardos

With the increasing prevalence of massive datasets, it becomes important to design algorithmic techniques for dealing with scenarios where the input to be processed does not fit in the memory of a single machine. Many highly successful approaches have emer ...
EPFL2022

Distributed Graph Learning With Smooth Data Priors

Pascal Frossard, Mireille El Gheche, Isabela Cunha Maia Nobre

Graph learning is often a necessary step in processing or representing structured data, when the underlying graph is not given explicitly. Graph learning is generally performed centrally with a full knowledge of the graph signals, namely the data that live ...
IEEE2022

Efficient Streaming Subgraph Isomorphism with Graph Neural Networks

Karl Aberer, Quoc Viet Hung Nguyen, Chi Thang Duong, Trung-Dung Hoang

Queries to detect isomorphic subgraphs are important in graph-based data management. While the problem of subgraph isomorphism search has received considerable attention for the static setting of a single query, or a batch thereof, existing approaches do n ...
ASSOC COMPUTING MACHINERY2021

Uniform parsing for hyperedge replacement grammars

Petter Harald Ericson

It is well known that hyperedge-replacement grammars can generate NP-complete graph languages even under seemingly harsh restrictions. This means that the parsing problem is difficult even in the non-uniform setting, in which the grammar is considered to b ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2021

Fast and Accurate Efficient Streaming Subgraph Isomorphism

Karl Aberer, Quoc Viet Hung Nguyen, Chi Thang Duong, Trung-Dung Hoang

Queries to detect isomorphic subgraphs are important in graph-based data management. While the problem of subgraph isomorphism search has received considerable attention for the static setting of a single query, or a batch thereof, existing approaches do n ...
2020

Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes

Stefano Zamuner, Margherita Marchi

Applications of machine learning and graph theory techniques to neuroscience have witnessed an increased interest in the last decade due to the large data availability and unprecedented technology developments. Their employment to investigate the effect of ...
NATURE RESEARCH2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.