Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
On conventional offshore petroleum platforms, the combined heat and power production (CHP) currently depends on simple cycle gas turbine systems (SCGT) that operate at lower efficiency and increased environmental impact, compared to modern onshore thermoelectric plants. Additionally, the reduced space and the limited weight budget on offshore platforms have discouraged operators from integrating more efficient, but also bulkier cogeneration cycles (e.g. combined cycles). In spite of these circumstances, more stringent environmental regulations of offshore oil and gas activities have progressively led to a renewed interest in the integration of advanced cogeneration systems, together with either customary or unconventional carbon capture approaches, to maintain both higher power generation efficiencies and reduced CO2 emissions. Thus, in this paper, it is evidenced how advanced gas turbine concepts are promising technologies for maintaining or even increasing efficiency, while facilitating the capture rate of CO2 produced, either for geological storage or enhanced oil recovery. Despite the profuse research works on onshore applications, advanced cogeneration and carbon capture systems have been barely studied in the context of supplying the power to offshore petroleum platforms. Accordingly, the performance of a conventional offshore petroleum production platform (without carbon capture system) is for the first time compared to other configurations, based on either an amines-based chemical absorption system or oxyfuel combustion concepts (e.g. S-Graz and Allam cycles) for CO2 capture purposes. Since the original power and heat requirements of the processing platform must remain satisfied, an energy integration analysis is performed to determine the waste heat recovery opportunities. Additionally, the exergy method helps quantifying the most critical components that lead to the largest irreversibility and identifying the thermodynamic potential for enhanced cogeneration plants. As a result, oxyfuel equipped platforms provide a diversified set of advantages, while keeping competitive efficiencies. For instance, advanced systems allow for cutting down ostensibly the atmospheric CO2 emissions compared to the conventional and amines-based power plant configurations of the FPSO.
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier