Universal and adaptive methods for robust stochastic optimization
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Redundant Gabor frames admit an infinite number of dual frames, yet only the canonical dual Gabor system, con- structed from the minimal l2-norm dual window, is widely used. This window function however, might lack desirable properties, such as good time-f ...
We develop tractable semidefinite programming based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It ...
This paper deals with direct data-driven design of model-reference controllers whose number of parameters is constrained. Input-output (I/O) sparse controllers are introduced and proposed as an alternative to low-order controller tuning. The optimal I/O sp ...
The convex ℓ1-regularized logdet divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the ℓ1-regularization is nonsmooth, the logdet objective is n ...
We study the multi-view imaging problem where one has to reconstruct a set of l images, representing a single scene, from a few measurements made at different viewpoints. We first express the solution of the problem as the minimizer of a non-convex objecti ...
Learning a visual object category from few samples is a compelling and challenging problem. In several real-world applications collecting many annotated data is costly and not always possible. However a small training set does not allow to cover the high i ...
Efficient Global Optimization (EGO) is an optimization strategy based on approximating functions, namely Gaussian process models. We show the application of this technique to a model calibration problem referred to a geomechanical application. By means of ...
In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a distributed diffus ...
The convex l(1)-regularized log det divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the l(1)-regularization is nonsmooth, the log det objective is not globally Li ...
We study the multi-view imaging problem where one has to reconstruct a set of l images, representing a single scene, from a few measurements made at different viewpoints. We first express the solution of the problem as the minimizer of a non-convex objecti ...