Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The recently proposed recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller codes has received significant attention as it provides near-ML decoding performance at reasonable complexity for short codes. However, its complicated structure makes it unsuitable for hardware implementation. Iterative projection-aggregation (IPA) decoding is a modified version of RPA decoding that simplifies the hardware implementation. In this work, we present a flexible hardware architecture for the IPA decoder that can be configured from fully-sequential to fully-parallel, thus making it suitable for a wide range of applications with different constraints and resource budgets. Our simulation and implementation results show that the IPA decoder has 41% lower area consumption, 44% lower latency, four times higher throughput, but currently seven times higher power consumption for a code with block length of 128 and information length of 29 compared to a state-of-the-art polar successive cancellation list (SCL) decoder with comparable decoding performance.