Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can ac-cess 3D volumes on the scale of 1 micron with a resolution of nanometers, making it ideal for this task. Here we introduce two relevant advances: (a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and (b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy. Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to-isotropic resolution in the reconstruction without averaging. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Fabian Fischer, Patricia Brandl