Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and timeconsuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for forecasting algal blooms is a feasible and useful method to overcome these problems. This study explores the potential application of optical measures to enhance algal bloom prediction in terms of prediction accuracy and workload reduction, aided by machine learning (ML) models. Compared to absorptionderived parameters, commonly used fluorescence indices such as the fluorescence index (FI), humification index (HIX), biological index (BIX), and protein-like component improved the prediction accuracy. However, the prediction accuracy was decreased when all optical indices were considered for computation due to increased noise and uncertainty in the models. With the exception of chemical oxygen demand (COD), this study successfully replaced biochemical oxygen demand (BOD), dissolved organic carbon (DOC), and nutrients with selected fluorescence indices, demonstrating relatively analogous performance in either training or testing data, with consistent and good coefficient of determination (R2) values of approximately 0.85 and 0.74, respectively. Among all models considered, ensemble learning models consistently outperformed conventional regression models and artificial neural networks (ANNs). However, there was a trade-off between accuracy and computation efficiency among the ensemble learning models (i.e., Stacking and XGBoost) for algal bloom prediction. Our study offers a glimpse of the potential application of spectroscopic measures to improve accuracy and efficiency in algal bloom prediction, but further work should be carried out in other water bodies to further validate our proposed hypothesis.
Nils Rädecker, Claudia Isabella Pogoreutz