Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn2+ and Co2+) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in angstrom-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H2 separation performance. The method reported here will probably accelerate the development of two-dimensional metal-organic framework films for efficient membrane separation. Unit-cell-thick films of metal-organic frameworks with ordered porosity would be attractive for membrane applications as these thin systems combine large molecular flux with high selectivity. Here crystalline ZIF films are grown on a crystalline substrate with high H2/N2 gas separation performance.
Quentin Jean-Marie Armand Guesnay
Kumar Varoon Agrawal, Davide Campi, Jian Hao, Deepu Joseph Babu, Qi Liu