Quasi-momentEn physique du solide, et notamment des matériaux conducteurs, on appelle quasi-moment la quantité de mouvement associée au vecteur d'onde des électrons dans le réseau réciproque d'un réseau cristallin par la formule : où est la constante de Planck réduite. À l'instar de la quantité de mouvement de la mécanique, le quasi-moment est généralement conservé lors des interactions entre particules dans le réseau cristallin, ce qui en fait un outil important pour la modélisation des phénomènes physiques qui s'y déroulent.
Surface de FermiEn mécanique quantique et en physique de la matière condensée, la surface de Fermi est une limite abstraite utile pour prédire les caractéristiques électriques, magnétiques, etc. de matériaux, en particulier des métaux. La description de la surface de Fermi ne se fait pas dans le réseau cristallin réel, mais dans le réseau réciproque où l'énergie peut être directement exprimée en fonction de la quantité de mouvement. Le réseau réciproque est obtenu par une transformée de Fourier du réseau réel et est un outil indispensable pour la description des propriétés d'un solide en physique.
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Energy–momentum relationIn physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Masse effectiveredresse=1.5|vignette|Structure de bande générée pour Si, Ge, GaAs et InAs massifs par la méthode . La masse effective est une notion utilisée en physique du solide pour l'étude du transport des électrons. Plutôt que de décrire des électrons de masse fixée évoluant dans un potentiel donné, on les décrit comme des électrons libres dont la masse effective varie. Cette masse effective peut-être positive ou négative, supérieure ou inférieure à la masse réelle de l'électron.
Tests de l'énergie et de la quantité de mouvement relativistesLes tests de l'énergie et de la quantité de mouvement relativistes visent à confirmer les expressions relativistes de l'énergie, de la quantité de mouvement et de la masse. Selon la relativité restreinte, certaines propriétés de particules élémentairess massives qui atteignent des vitesses proches de la vitesse de la lumière dévient de façon significative des prédictions de la mécanique newtonienne. Par exemple, aucune particule massive ne peut atteindre la vitesse de la lumière.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
E=mc2L'équation (lire « E égale m c carré » ou « E égale m c deux ») est une formule d'équivalence entre la masse et l'énergie, rendue célèbre par Albert Einstein dans une publication en 1905 sur la relativité restreinte. Cette relation signifie qu'une particule de masse m isolée et au repos dans un référentiel possède, du fait de cette masse, une énergie E appelée énergie de masse, dont la valeur est donnée par le produit de m par le carré de la vitesse de la lumière dans le vide (c).
Model aircraftA model aircraft is a small unmanned aircraft. Many are replicas of real aircraft. Model aircraft are divided into two basic groups: flying and non-flying. Non-flying models are also termed static, display, or shelf models. Aircraft manufacturers and researchers make wind tunnel models for testing aerodynamic properties, for basic research, or for the development of new designs. Sometimes only part of the aircraft is modelled.
MaquetteUne maquette est une représentation partielle ou complète d'un système ou d'un objet (existant ou en projet) afin d'en tester et valider certains aspects et/ou le comportement (maquette fonctionnelle), ou simplement à des fins ludiques (maquette de jeu) ou informatives (présentation pédagogique ou commerciale d'une réalisation ou d'un projet). La maquette peut être réalisée en deux ou trois dimensions, à une échelle donnée, le plus souvent réduite ou agrandie pour en faciliter la visualisation ou la manipulation.