Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
These datasets contain the total particle number concentrations and normalized size distributions (dN/dlogDp) of excited, fluorescent, and hyper-fluorescent particles of sizes 0.5 to 20 μm (optical diameter). The normalized size distribution datasets are split into 20 size bins: 0.5 - 0.6 μm, 0.6 - 0.72 μm, 0.72 - 0.87 μm, 0.87 - 1.05 μm, 1.05 - 1.26 μm, 1.26 - 1.51 μm, 1.51 - 1.82 μm, 1.82 - 2.19 μm, 2.19 - 2.63 μm, 2.63 - 3.16 μm, 3.16 - 3.8 μm, 3.8 - 4.57 μm, 4.57 - 5.5 μm, 5.5 - 6.61 μm, 6.61 - 7.95 μm, 7.95 - 9.56 μm, 9.56 - 11.50 μm, 11.5 - 13.83 μm, 13.83- 16.63 μm and 16.63 - 20 μm. The data were measured by a WIBS-NEO (Wideband Integrated Bioaerosol Sensor, model New Electronics option) by droplet measurement techniques ltd. The data were processed using the IGOR WIBS toolkit V1.36 (DMT) and python version 3.9.7. These datasets have been averaged to 1 hour time resolution. The datasets were cleaned from local pollution sources by applying a pollution flag developed by Beck et al. (2022a,b), which is based on the rate of change in particle number concentration with 1 min time resolution. Data points with more than 10 polluted minutes within an hour were removed from the WIBS datasets. Time periods with zero filter measurements and time periods with unstable flow that affected number concentrations have been removed from the dataset. The WIBS measures the size, asymmetry and fluorescence of particles with an optical diameter of 0.5 – 20 µm. Detected particles are excited by two UV flashlamps at wavelengths of 280 and 370 nm and their emitted fluorescence is measured by two photomultipliers with bandwidths of 310 - 400 nm, and 420 - 650 nm. The WIBS counts excited particles at a maximum frequency of 125 Hz, which corresponds to a maximum concentration of 2.5*104 particles/L with a sample flow of 0.3 L/min. Excited particles were classified as fluorescent if their fluorescent intensity exceeded the background intensity by three standard deviations (3σ) and as hyper-fluorescent if the fluorescent intensity exceeded the background intensity by 9σ. Excited particles with a lower fluorescent intensity were considered to be non-fluorescent. The background fluorescence was determined by measuring the fluorescent signal in the measurement chamber in absence of particles. Background measurements were performed every 26 h. The combination of two excitation wavelengths and two detector wavebands allows the classification of fluorescent particles into seven types: A, B, C, AB, AC, BC, and ABC (Perring et al. (2015); Savage et al. (2017)). For further information about the instrumental setup, refer to Heutte et al. (2023).
Christoph Merten, Jatin Panwar
Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Nora Bergner, Alireza Moallemi
Julia Schmale, Andrea Baccarini, Ivo Fabio Beck, Hélène Paule Angot