Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
Based on the success of deep neural networks for image recovery, we propose a new paradigm for the compression and decompression of ultrasound~(US) signals which relies on stacked denoising autoencoders. The first layer of the network is used to compress t ...
Self-localization of nodes in a sensor network is typically achieved using either range or direction measurements; in this paper, we show that a constructive combination of both improves the estimation. We propose two localization algorithms that make use ...
We show how nonlinear embedding algorithms popular for use with "shallow" semi-supervised learning techniques such as kernel methods can be easily applied to deep multi-layer architectures, either as a regularizer at the output layer, or on each layer of t ...