Publication

Safe Deep Neural Networks

Kyle Michael Matoba
2024
Thèse EPFL
Résumé
				The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is troubling because DNNs can perform well on a task most of the time, but can sometimes exhibit nonintuitive and nonsensical behavior for reasons that are not well understood.					I begin this thesis arguing that closer alignment between human intuition and the operation of DNNs is massively beneficial. Next, I identify a class of DNNs that are particularly tractable and which play an important role in science and technology. Then I posit three dimensions on which alignment can be achieved – (1) philosophy: thought exercises to understand the fundamental considerations, (2) pedagogy: to help fallible humans interact effectively with neural networks, and (3) practice: methods to impose desired properties upon neural network, without degrading their performance.					Then I present my work along these lines. Chapter 2 analyzes philosophically the issues of using penalty terms in criterion functions to avoid (negative) side effects via a three-way decomposition into the choice of (1) baseline, (2) deviation measure, and (3) scale of the penalty. Chapter 3 attempts to understand whether a DNN maps inputs to an output class. I present two approaches to this problem, which can help users recognize unsafe behavior, even if they cannot formulate safety beforehand. Chapter 4 examines whether max pooling can be written as the composition of ReLU activations in order to investigate an open conjecture that max pooling is essentially redundant. These studies advance our pedagogical grasp of DNN modelling. Finally, Chapter 5 engages with practice by presenting a method for making DNNs more linear, and thereby more human-compatible.				
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.