Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Whether a document is of historical or contemporary significance, typography plays a crucial role in its composition. From the early days of modern printing, typographic techniques have evolved and transformed, resulting in changes to the features of typography. By analyzing these features, we can gain insights into specific time periods, geographical locations, and messages conveyed through typography. Therefore, in this paper, we aim to investigate the feasibility of training a model to classify serif typeswithout knowledge of the font and character. We also investigate how to train a vectorial-based image model able to group together fonts with similar features. Specifically, we compare the use of state-of-theart image classification methods, such as the EfficientNet-B2 and the Vision Transformer Base model with different patch sizes, and the state-of-the-art fine-grained image classification method, TransFG, on the serif classification task. We also evaluate the use of the DeepSVG model to learn to group fonts with similar features. Our investigation reveals that fine-grained image classification methods are better suited for the serif classification tasks and that leveraging the character labels helps to learn more meaningful font similarities.
Sahand Jamal Rahi, Vojislav Gligorovski, Marco Labagnara, Jun Ma, Xin Yang, Maxime Emmanuel Scheder, Yao Zhang, Bo Wang, Yixin Wang, Lin Han