Publication

Modeling and optimization of PCB coils for inductive power transfer systems

Xiaotong Du
2024
Thèse EPFL
Résumé

The auxiliary power supply for medium voltage converters requires high insulation capability between the source and the load. Inductive power transfer technology, with an air gap between the primary and secondary coil, offers such high insulation capability, making it a potential candidate for auxiliary power supply in medium voltage converters. However, the large air gap between the primary and secondary coil typically results in a loosely coupled inductive power transfer system, necessitating optimization of the inductive power transfer system to achieve high efficiency and power density. This thesis focuses on the coil link optimization. It introduces a novel design of the coil link structure, models the coil pairs, and presents an optimization flow to design optimal winding geometry based on given electric specifications. The research of this thesis revolves around PCB coils, which are favored for their easily controlled manufacturing process. To maintain modularity in medium voltage converters, the inductive power transfer system consists of multiple coil pairs, each supplying one power electronics building block. The primary side of each coil pair is connected to a common power source. To ensure independent operation of the secondary coils without closed-loop control, the LCL-S compensation network is utilized. The advantage of this compensation network is analyzed and its design process is discussed in this thesis. The characteristics of a coil, including self and mutual inductance and coil losses, are defined by its winding geometry. Therefore, by optimizing the winding geometry, high coil link efficiency can be achieved. This thesis develops a model to calculate the magnetic field inside each winding turn when no ferrite is present behind the winding. The brute-force optimization is conducted on the PCB coil pairs with the proposed model, resulting in a Pareto front showcasing the trade-off between high efficiency and high power density. When ferrite is added to the backside of a winding, it alters its inductance and resistance, and therefore has the potential to increase power transfer efficiency. However, the modeling of the coil pair becomes more complex due to the crowding field around ferrite edges. In this thesis, different ferrite shapes are compared, and a magnetic model with 5 mm thick round shape ferrite is proposed, based on a database from finite element simulation together with an artificial neural network, predicting the coil pair characteristics. The validity of the finite element simulation data is pre-verified with impedance analyzer and power tests, and the accuracy of the magnetic model is confirmed with simulation test datasets and characteristic tests on one coil prototype. The design of the coil link requires thermal coordination considering the temperature limit of each component inside coils. This thesis proposes a thermal model to predict the temperature rise in coil pairs. The proposed electric circuit model with LCL-S compensation network, the magnetic model based on artificial neural network, and the thermal model based on thermal network are all independent from external simulations and easily integrated into the optimization flow, ensuring fast optimization time. After exploring all degrees of freedom of winding geometries, one coil pair on the Pareto front is selected and tested under various load conditions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Transmission d'énergie sans fil
La transmission d'énergie sans fil est une technique permettant la distribution de l'énergie électrique sans utiliser de support matériel. Cette technique est destinée à être utilisée, soit pour alimenter des lieux difficiles d'accès, soit pour recharger des objets nomades (véhicules, téléphones, outillage portatif...) . Contrairement à la transmission de données, le rendement est le critère à maximiser pour la transmission d'énergie, il détermine le choix entre les différentes technologies.
Bobine (électricité)
Une bobine, solénoïde, auto-inductance ou quelquefois self (par anglicisme), est un composant courant en électrotechnique et électronique. Une bobine est constituée d'un enroulement de fil conducteur éventuellement autour d'un noyau en matériau ferromagnétique qui peut être un assemblage de feuilles de tôle ou un bloc de ferrite. Les physiciens et ingénieurs français l'appellent souvent par synecdoque « inductance », ce terme désignant la propriété caractéristique de la bobine, qui est son opposition à la variation du courant dans ses spires.
Bobine Tesla
thumb|Bobine Tesla (Nikola Tesla Memorial Centre, Smiljan, Croatie). La bobine Tesla, ou transformateur de Tesla, est une machine électrique fonctionnant avec du courant alternatif à haute fréquence et permettant de produire de très hautes tensions. Elle porte le nom de son inventeur, Nikola Tesla, qui l'a mise au point vers 1891. L'appareil consiste en deux ou trois circuits de bobinage couplés et accordés par résonance. Il n'y a pas de noyau métallique comme dans les transformateurs électriques classiques : c'est un transformateur à noyau d'air.
Afficher plus
Publications associées (80)

Modeling and Design Optimization of Loosely Coupled PCB Spiral Coils in Inductive Power Transfer Systems

Drazen Dujic, Xiaotong Du

There are various possibilities to realize coil winding designs for an inductive power transfer system. In order to achieve high power transfer efficiency and power density and explore trade-offs between the two, design optimization around the coil link is ...
2023

Modal engineering of electromagnetic circuits to achieve rapid settling times

Matthias Imboden

Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic ...
AIP Publishing2023

Impact of Hysteresis Losses in Hybrid (HTS-LTS) Coils for Fusion Applications

Davide Uglietti

Several conductor designs featuring High Temperature Superconducting (HTS) stacked tapes for fusion coils are being proposed. These conductors are planned to operate in time-varying magnetic field and current; thus, the estimation of AC losses is fundament ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023
Afficher plus
MOOCs associés (32)
Electrotechnique I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Electrotechnique I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Electrotechnique II
Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.