Génération (physique des particules)En physique des particules, une génération est une division des particules élémentaires. Ces particules diffèrent en fonction de leurs saveurs et de leurs masses mais leurs interactions élémentaires sont les mêmes. Dans le modèle standard de la physique des particules, les fermions sont classés en trois familles ou générations. Chacune d'elles comprend deux quarks (respectivement les up et down , les strange et charm , et les bottom et top ) ; un lepton chargé (respectivement l'électron , le muon et le tau ) ; et un neutrino (respectivement le neutrino électronique , le neutrino muonique et le neutrino tauique ).
Minimal Supersymmetric Standard ModelThe Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.
SphaléronEn physique des particules, un sphaléron (σφαλερός, pouvant se traduire par « glissant ») est une solution des équations de champ électrofaible selon le modèle standard. Indépendante du temps, elle implique une violation du nombre baryonique et leptonique. Impliquant plusieurs processus qui ne peuvent pas être illustrés par des diagrammes de Feynman, ces derniers sont considérés comme . Géométriquement, un sphaléron est un point-selle de l'énergie potentielle électrofaible.
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Interaction fortethumb|250px|alt=Représentation des quarks dans un proton : deux quarks Up et un quark Down, chacun d'un couleur différente, liés par l'interaction forte.|L'interaction forte lie les quarks dans les nucléons, ici dans un proton. L'interaction forte, ou force forte, appelée parfois force de couleur, ou interaction nucléaire forte, est l'une des trois interactions entre particules élémentaires de la matière dans le modèle standard aux côtés de l'interaction électromagnétique et de l'interaction faible.
DØDØ (comme l'écrivent ses promoteurs) ou D0 (lire DZero en anglais), est une expérience de physique des particules localisée à Fermilab (Chicago, États-Unis) sur l'accélérateur Tevatron. Le nom du projet vient de celui de la zone d’accueil de l’accélérateur sur lequel on cherche à mesurer la masse du boson de Higgs, qui échappe encore à une détection directe.
Interaction électrofaibleL’interaction électrofaible, aussi appelée force électrofaible, est la description unifiée de deux des quatre interactions fondamentales de l'univers, à savoir l'électromagnétisme (appelé électrodynamique quantique dans sa version quantique) et l'interaction faible. Ces deux forces paraissent pourtant très différentes aux échelles d'énergie atomique, et même nucléaire : la force électromagnétique est dite de portée infinie car on peut l'observer aisément à l'échelle macroscopique tandis que la force faible a une influence uniquement à l'échelle microscopique, au niveau du noyau atomique.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
AnyonEn physique quantique, un anyon est un type de particule propre aux systèmes à deux dimensions. Ni boson ni fermion, l'anyon en est une généralisation. Prédits et théorisés depuis plus de quatre décennies, les premières preuves expérimentales de l'existence des anyons ne datent que de 2020. Le concept d'anyon est utile lorsqu’on s’intéresse à un système à deux dimensions tel que le graphène ou l’.
CMS (expérience)L'expérience CMS (du nom du détecteur Compact Muon Solenoid, en français « solénoïde compact à muons ») est une des expériences de physique des particules du Grand collisionneur de hadrons (LHC) du CERN. Le détecteur CMS est situé dans une caverne souterraine à Cessy au point 5, en France, près de la frontière avec la Suisse. Il a été construit et est exploité par environ de presque , appartenant à scientifiques. Le détecteur a une forme cylindrique de de long et de diamètre, et pèse .