From Prediction to Prevention: Leveraging Deep Learning in Traffic Accident Prediction Systems
Publications associées (67)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
Our transportation field has recently witnessed an arms race of neural network-based trajectory predictors. While these predictors are at the core of many applications such as autonomous navigation or pedestrian flow simulations, their adversarial robustne ...
Detecting manipulations in facial images and video has become an increasingly popular topic in media forensics community. At the same time, deep convolutional neural networks have achieved exceptional results on deepfake detection tasks. Despite the remark ...
The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function f(upsilon(perpendicular to)) of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
EPFL2021
, ,
Safety is still the main issue of autonomous driving, and in order to be globally deployed, they need to predict pedestrians' motions sufficiently in advance. While there is a lot of research on coarse-grained (human center prediction) and fine-grained pre ...
2022
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
EPFL2021
, , ,
While deep neural networks are state-of-the-art models of many parts of the human visual system, here we show that they fail to process global information in a humanlike manner. First, using visual crowding as a probe into global visual information process ...
2022
, ,
Recent traffic flow prediction methods are lacking abilities to determine predictive features. Thus, they will propagate the error in the next timestamps. In this paper, first, we assess the role of spatial and temporal features on the traffic speed predic ...