Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Optimizing resource utilization in target platforms is key to achieving high performance during DNN inference. While optimizations have been proposed for inference latency, memory footprint, and energy consumption, prior hardware-aware neural architecture ...
A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that ...
Lensless imaging provides a large panel of benefits : cost, size, weight, etc., that are crucial for wearable application, IoT or medical devices. Such setups require the design of reconstruction algorithms to recover the image from the captured measuremen ...
2023
, ,
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its mutual information when the tensor is of even order. The proof uses the adaptive interpolation method, for which rank-on ...
IEEE2019
We establish a direct connection between general tensor networks and deep feed-forward artificial neural networks. The core of our results is the construction of neural-network layers that efficiently perform tensor contractions and that use commonly adopt ...
AMER PHYSICAL SOC2022
, , , , , , , , ,
We present HOTmix, a new model to describe the diffusion MRI signal for molecules undergoing hindered diffusion. HOTmix is based on a mixture of generalized higher order tensors, explicitly incorporating the diffusion sequence’s time-dependent parameters. ...
2019
, , ,
The vulnerability of deep neural networks to adversarial attacks has posed significant threats to real-world applications, especially security-critical ones. Given a well-trained model, slight modifications to the input samples can cause drastic changes in ...
IEEE2021
, ,
We propose a graph signal processing framework to overcome the computational burden of Tensor Robust PCA (TRPCA). Our framework also serves as a convex alternative to graph regularized tensor factorization methods. Our method is based on projecting a tenso ...