Principe cosmologiqueLa cosmologie ne peut s’envisager qu’en faisant des hypothèses simplificatrices que l’on appelle des « principes cosmologiques ». Sans cet artifice, il faudrait en effet connaître les vitesses et les positions de toutes les particules dans l’espace, ce qui est tout simplement impossible. On distingue actuellement quatre grands principes : Le principe cosmologique d'homogénéité et d'isotropie ; Le principe cosmologique parfait (ou d'équivalence temporelle) ; Le principe cosmologique global ; Le principe cosmologique de l'Univers fractal.
Grand déchirementLe « grand déchirement » (Big Rip en anglais) est un modèle cosmologique proposant un scénario inhabituel de la fin de l'Univers. Dans ce scénario, toutes les structures, des amas de galaxies jusqu'aux atomes, sont détruites, étirées par une expansion de plus en plus violente, jusqu'à être disloquées, « déchirées » (d'où Big « Rip »). Ce modèle suppose l'existence d'une forme d'énergie très atypique, l'énergie fantôme, dont la principale caractéristique est de voir sa densité augmenter alors que l'expansion se poursuit.
Nome (mathematics)In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees. The nome function is given by where and are the quarter periods, and and are the fundamental pair of periods, and is the half-period ratio.
J-invariantLe j-invariant, parfois appelé fonction j, est une fonction introduite par Felix Klein pour l'étude des courbes elliptiques, qui a depuis trouvé des applications au-delà de la seule géométrie algébrique, par exemple dans l'étude des fonctions modulaires, de la théorie des corps de classes et du monstrous moonshine. On travaille dans le . Soient quatre points distincts , leur birapport est : Cette quantité est invariante par homographies du plan, mais dépend de l'ordre des quatre nombres considérés.