Predicting the long-term collective behaviour of fish pairs with deep learning
Publications associées (74)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
While the introduction of practical deep learning has driven progress across scientific fields, recent research highlighted that the requirement of deep learning for ever-increasing computational resources and data has potential negative impacts on the sci ...
2023
,
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742 labora ...
2023
,
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...
Research Publishing2023
,
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...
2023
, ,
Deep learning models for learning analytics have become increasingly popular over the last few years; however, these approaches are still not widely adopted in real-world settings, likely due to a lack of trust and transparency. In this paper, we tackle th ...
Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive method for studying white matter tracts of the brain. However, accurate microstructure estimation with fiber orientation distribution (FOD) using existing computational methods requires ...
Owing to the diminishing returns of deep learning and the focus on model accuracy, machine learning for chemistry might become an endeavour exclusive to well-funded institutions and industry. Extending the focus to model efficiency and interpretability wil ...
The resolution of proton solid-state NMR spectra is usually limited by broadening arising from dipolar interactions between spins. Magic-angle spinning alleviates this broadening by inducing coherent averaging. However, even the highest spinning rates expe ...
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to e ...