Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Quadruped animal locomotion emerges from the interactions between the spinal central pattern generator (CPG), sensory feedback, and supraspinal drive signals from the brain. Computational models of CPGs have been widely used for investigating the spinal cord contribution to animal locomotion control in computational neuroscience and in bio-inspired robotics. However, the contribution of supraspinal drive to anticipatory behavior, i.e. motor behavior that involves planning ahead of time (e.g. of footstep placements), is not yet properly understood. In particular, it is not clear whether the brain modulates CPG activity and/or directly modulates muscle activity (hence bypassing the CPG) for accurate foot placements. In this paper, we investigate the interaction of supraspinal drive and a CPG in an anticipatory locomotion scenario that involves stepping over gaps. By employing deep reinforcement learning (DRL), we train a neural network policy that replicates the supraspinal drive behavior. This policy can either modulate the CPG dynamics, or directly change actuation signals to bypass the CPG dynamics. Our results indicate that the direct supraspinal contribution to the actuation signal is a key component for a high gap crossing success rate. However, the CPG dynamics in the spinal cord are beneficial for gait smoothness and energy efficiency. Moreover, our investigation shows that sensing the front feet distances to the gap is the most important and sufficient sensory information for learning gap crossing. Our results support the biological hypothesis that cats and horses mainly control the front legs for obstacle avoidance, and that hind limbs follow an internal memory based on the front limbs' information. Our method enables the quadruped robot to cross gaps of up to 20 cm (50% of body-length) without any explicit dynamics modeling or Model Predictive Control (MPC).
Auke Ijspeert, Andrea Di Russo, Dimitar Yuriev Stanev, Anushree Bapusaheb Sabnis, Stéphane Armand