Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Algorithmic efficiencyIn computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. An algorithm must be analyzed to determine its resource usage, and the efficiency of an algorithm can be measured based on the usage of different resources. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage.
Erreur d'approximationvignette|Approximation de la fonction exponentielle par une fonction affine. En analyse numérique, une branche des mathématiques, l'erreur d'approximation de certaines données est la différence entre une valeur exacte et une certaine valeur approchée ou approximation de celle-ci. Une erreur d'approximation peut se produire lorsque la mesure des données n'est pas précise (en raison des instruments) ; ou lors de l'emploi de valeurs approchées au lieu des valeurs exactes (par exemple, 3,14 au lieu de π).
Intégrateur symplectiqueUn intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Taux d'erreurLe taux d'erreur ou B.E.R., abréviation de l'expression anglaise Bit Error Rate, désigne une valeur, relative au taux d'erreur, mesurée à la réception d'une transmission numérique, relative au niveau d'atténuation et/ou de perturbation d'un signal transmis. Ce phénomène survient également lors de l'échantillonnage (numérisation), lors de la lecture et de la sauvegarde des données (CD-R, DVD-R, disque dur, RAM...). Ce taux détermine le nombre d'erreurs apparues entre la modulation et juste après la démodulation du signal.
Intégration de VerletLintégration de Verlet est un schéma d'intégration qui permet de calculer la trajectoire de particules en simulation de dynamique moléculaire. Cette méthode offre une meilleure stabilité que la plus simple méthode d'Euler (créée au ), de même que d'importantes propriétés dans les systèmes physiques, telles que la réversibilité dans le temps et la conservation de propriété. À première vue, il peut sembler naturel de calculer les trajectoires en utilisant la méthode d'Euler. Cependant, ce type d'intégration souffre de nombreux problèmes.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.