Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
Science des surfacesLa science des surfaces est une section de la science des matériaux consacrée à l'étude des phénomènes physiques et chimiques qui se produisent à l' entre deux phases ou entre une phase et le vide. Les propriétés de la matière en surface sont en effet distinctes de celles du cœur des matériaux (bulk). Par exemple, la coordinence des atomes en surface est inférieure à celle des atomes du reste du matériau ce qui induit une réactivité particulière de ces derniers.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.
Sonde ionique focaliséeLa sonde ionique focalisée, plus connue sous le nom du sigle anglais FIB (Focused ion beam), est un instrument scientifique qui ressemble au microscope électronique à balayage (MEB). Mais là où le MEB utilise un faisceau d'électrons focalisés pour faire l'image d'un échantillon, la "FIB" utilise un faisceau d'ions focalisés, généralement du gallium. Il est en effet facile de construire une source à métal liquide (LMIS, de l'anglais liquid metal ion source). Contrairement aux MEB, les FIB sont destructives.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Microscopie à sonde localeLa microscopie à sonde locale (MSL) ou microscopie en champ proche (MCP) ou scanning probe microscopy (SPM) en anglais est une technique de microscopie permettant de cartographier le relief (nano-topographie) ou une autre grandeur physique en balayant la surface à imager à l'aide d'une pointe très fine (la pointe est idéalement un cône se terminant par un seul atome). Le pouvoir de résolution obtenu par cette technique permet d'observer jusqu'à des atomes, ce qui est physiquement impossible avec un microscope optique, quel que soit son grossissement.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Microscope à force atomiquethumb|350px|Le premier microscope à force atomique du monde, au musée de la Science de Londres. Le microscope à force atomique (AFM pour atomic force microscope) est un type de microscope à sonde locale permettant de visualiser la topographie de la surface d'un échantillon. Inventé en 1985, par Gerd Binnig, Calvin Quate et Christoph Gerber, ce type de microscopie repose essentiellement sur l'analyse d'un objet point par point au moyen d'un balayage via une sonde locale, assimilable à une pointe effilée.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.