Réseau métallo-organiquevignette|Exemple de MOF avec différents ligands organiques. Les réseaux métallo-organiques (MOF, pour l'anglais metal–organic framework) sont des solides poreux hybrides cristallins constitués d'ions métalliques ou de clusters coordonnés à des ligands organiques pour former des structures en une, deux ou trois dimensions. Les MOF présentent notamment une surface spécifique très élevée du fait de leur structure nanoporeuse. Les MOF sont nommés selon leur lieu de découverte suivi d’un numéro d’incrémentation, par exemple MIL-101 pour Matériaux Institut Lavoisier , ou UiO-66.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Stockage de l'hydrogèneLe concept de stockage de l'hydrogène désigne toutes les formes de mise en réserve du dihydrogène en vue de sa mise à disposition ultérieure comme produit chimique ou vecteur énergétique. Plusieurs possibilités existent, qui présentent avantages et inconvénients. Sous forme de gaz, le dihydrogène est peu dense et doit être fortement comprimé. La liquéfaction du dihydrogène se réalise à très basse température. L'hydrogène solide nécessite d'être lié à d'autres composants, notamment sous la forme d'hydrure.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Covalent organic frameworkCovalent organic frameworks (COFs) are a class of materials that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control and precursor selection.
Google DeepMindGoogle DeepMind est une entreprise spécialisée dans l'intelligence artificielle appartenant à Google. L'entreprise est remarquée notamment pour son programme de jeu de Go AlphaGo, et son logiciel AlphaFold, qui permet de prédire la structure des protéines à partir de leurs séquences en acides aminés. Originellement appelée DeepMind Technologies Limited et fondée en 2010 par Demis Hassabis, Mustafa Suleyman et Shane Legg, elle est rachetée le 26 janvier 2014, par Google pour plus de 628 millions de dollars américains.
Pile à combustible à membrane échangeuse de protonsLes piles à combustible à membrane échangeuse de protons, connues aussi sous le nom de piles à combustible à membrane électrolyte polymère (PEMFC, pour l'anglais en ou en) sont un type de piles à combustible développées pour des applications dans les transports aussi bien que pour des applications dans les portables. Leurs caractéristiques propres incluent un fonctionnement des gammes de basses pressions et températures et une membrane électrolyte polymère spécifique.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).