Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This dataset accompanies the publication "Quantum-mechanical effects in photoluminescence from thin crystalline gold films" published in Light: Science & Applications (https://doi.org/10.1038/s41377-024-01408-2). The data can be used to reproduce plots 1-4 in the main text and all plots with data in the supporting information. This data was generated through a combination of raman spectroscopy, microscale absorption meaurements and density functional theory modelling. All files are in excel spreadsheets and easily readable, except compressed files which have a readme file in the appropriate section. The abstract for the associated paper is as follows: Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unravelling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects emanating in the luminescence from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modelling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.
Giulia Tagliabue, Fateme Kiani Shahvandi, Alan Richard Bowman, Theodoros Tsoulos
,