Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present 3DHumanGAN, a 3D-aware generative adversarial network that synthesizes photo-like images of fullbody humans with consistent appearances under different view-angles and body-poses. To tackle the representational and computational challenges in synthesizing the articulated structure of human bodies, we propose a novel generator architecture in which a 2D convolutional backbone is modulated by a 3D pose mapping network. The 3D pose mapping network is formulated as a renderable implicit function conditioned on a posed 3D human mesh. This design has several merits: i) it leverages the strength of 2D GANs to produce high-quality images; ii) it generates consistent images under varying view-angles and poses; iii) the model can incorporate the 3D human prior and enable pose conditioning. Our model is adversarially learned from a collection of web images needless of manual annotation.
Vassily Hatzimanikatis, Anastasia Sveshnikova
Rémi Guillaume Petitpierre, Paul Robert Guhennec, Beatrice Vaienti, Didier Louis Dupertuis