Growth and Doping Mechanisms of III-V Nanostructures by Selective Area Epitaxy
Publications associées (37)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Semiconductor materials have given rise to today's digital technology and consumer electronics. Widespread adoption is closely linked to the ability to process and integrate them in devices at scale. Where flexibility and large surfaces are required, such ...
Semiconductors materials and devices are essential building blocks for many of the technologies deeply embedded in modern life. Improving the performance of semiconductor devices requires a deeper understanding of the fundamental mechanisms controlling the ...
III-V semiconductor nanowires have unique properties that make them ideal for advanced photodetectors on inexpensive substrates. For example, they exhibit enhanced or polarization-dependent light absorption, they can form complex heterostructures, and thei ...
GeSn is a promising group-IV semiconductor material for on-chip Si photonics devices and high-mobility transistors. These devices require the use of doped GeSn regions, achieved preferably in situ during epitaxy. From the electronic valence point of view, ...
AMER PHYSICAL SOC2023
, , , , , , ,
We outline the growth mechanismand shape evolution of GaAsnanoridges by selective area MOVPE with three well-identified, distinctstages of growth. Selective area epitaxy at the nanoscale enables fabricationofhigh-quality nanostructures in regular arrays wi ...
AMER CHEMICAL SOC2023
Crystal phase engineering is an exciting pathway to enhance the properties of conventional semiconductors. Metastable SiGe presents a direct band gap well suited for optical devices whereas wurtzite (WZ) phosphide alloys enable efficient light emission in ...
The majority of current semiconductor technologies are built on Si (100), such as the CMOS technology, or conventional solar cell devices. III-V semiconductors offer great perspectives given their high carrier mobility and direct band gap. However their in ...
Semiconductor nanowires (NWs) have been investigated for decades, but their application into commercial products is still difficult to achieve, with triggering causes related to the fabrication cost and structure complexity. Dopant control at the nanoscale ...
With the rise of quantum computing and recent experiments into topological quantum computers come exciting new opportunities for III-V semiconductor quantum nanostructures. In this thesis, we explore the scalable fabrication of patterned arrays and branche ...
EPFL2020
Progress in nanotechnology, including fabrication and characterization tools, opened up the unprecedented low dimensional materials era, where we can manipulate and structure matter on a size scale that we could not reach before. Due to many interesting pr ...