Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Wastewater-based epidemiology offers a complementary approach to clinical case-based surveillance of emergent diseases and can help identify regions with infected people to prioritize clinical surveillance strategies. However, tracking emergent diseases in wastewater requires reliance on novel testing assays with uncertain sensitivity and specificity. Limited pathogen shedding may cause detection to be below the limit of quantification or bordering the limit of detection. Here, we investigated how the definition of limit of detection for quantitative polymerase chain reaction (qPCR) impacts epidemiological insights during an mpox outbreak in Switzerland. 365 wastewater samples from three wastewater treatment plants in Switzerland from 9 March through 31 October 2022 were analyzed for mpox DNA using qPCR. We detected mpox DNA in 22% (79 of 365) wastewater samples based on a liberal definition of qPCR detection as any exponentially increasing fluorescence above the threshold. Based on a more restrictive definition as the lowest concentration at which there is 95% likelihood of detection, detection was 1% (5 of 365). The liberal definition shows high specificity (90%) and accuracy (78%), but moderate sensitivity (64%) when benchmarked against available clinical case reporting, which contrasts with higher specificity (98%) but lower sensitivity (10%) and accuracy (56%) of the 95% likelihood definition. Wastewater-based epidemiology applied to an emergent pathogen will require optimizing public health trade-offs between reporting data with high degrees of uncertainty and delaying communication and associated action. Information sharing with relevant public health stakeholders could couple early results with clear descriptions of uncertainty.
Odile Marie Clotilde Hervás de Nalda-Larivé
Urs von Gunten, Florian Frédéric Vincent Breider, Margaux Océane Voumard